Last updateThu, 20 Jan 2022 11pm

Getting Over the Hump: How Dynamic Beam Lasers Could Be the Breakthrough for Manufacturing Fuel Cell Cars

Responding to auto industry demand, Civan Lasers, Fraunhofer ILT, and Smart Move to increase bipolar welding feed rate

Dynamic beam lasers may provide the automotive industry with a technological solution for economically mass-producing clean energy engines through an increased feed rate for bipolar welding, according to recent findings from the Eureka Project, based at Fraunhofer Labs in Aachen, Germany.

As the automotive industry shifts to e-mobility, manufacturers are also shifting from combustion engines to fuel cell engines. The challenge to efficiently produce fuel cells lies in welding the bipolar plates — thin plates of just hundreds of microns. Each cell contains 300 to 400 plates with a weld seam of 3 to 6 meters. While there are many efforts to increase welding speed to keep up with demand, increasing the feed rate to more than 0.5 m/sec results in welding defects, leading to faulty parts and a backlog of materials.

The three companies driving the Eureka Project — Civan Lasers in Israel, the Fraunhofer Institute for Laser Technology in Germany, and Smart Move in Germany — are international leaders in the field of laser welding. They aim to solve the welding problem by implementing Civan Lasers’ dynamic beam laser technology, which can wobble the beam in MHz frequencies, creating a faster, more accurate weld of the bipolar plates.

In response to these findings, Dr. Eyal Shekel, Civan’s CEO, shared, “We are confident that the unique capabilities of the dynamic beam laser will be able to solve this challenge.”

Dr. Alexander Olowinsky, a researcher with Fraunhofer ILT, added, “We look to reach a breakthrough in this project by using advanced sensors and complex beam shapes in high frequencies that were not available in the past.”

As testing continues, it is becoming clear that dynamic beam lasers could be the game-changing solution for fuel cell engine manufacturers.


  • Latest Post

  • Most Read

  • Twitter

Who's Online

We have 6509 guests and no members online

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.